• Cotton Rasmussen posted an update 6 months ago

    The main aims of the research were to produce efficient nanofibrous filters with long-term antibacterial properties and to confirm the functionality of samples under real filtration conditions. A polyurethane solution was modified by micro- or nanoparticles of copper oxide in order to juxtapose the aggregation tendency of particles depending on their size. Modified solutions were electrospun by the Nanospider technique. The roller spinning electrode with a needle surface and static wire electrode were used for the production of functionalized nanofibers. The antibacterial properties of the modified nanofibrous layers were studied under simulated conditions of water and air filtration. Particular attention was paid to the fixation mechanism of modifiers in the structure of filters. It was determined that the rotating electrode with the needle surface is more efficient for the spinning of composite solutions due to the continuous mixing and the avoidance of particle precipitation at the bottom of the bath with modified polyurethane. Moreover, it was possible to state that microparticles of copper oxide are more appropriate antimicrobial additives due to their weaker aggregation tendency but stronger fixation in the fibrous structure than nanoparticles. From the results, it is possible to conclude that nanofibers with well-studied durable antibacterial properties may be recommended as excellent materials for water and air filtration applications.Anionic species are one of the most common pollutants in residual and freshwaters. The presence of anthropogenic anions in water drastically increases the toxicity to living beings. Here, we report the preparation of a new optical active material based on tri(tosylamino)phthalocyanines grafted to ferromagnetic silica nanoparticles for anion detection and removal. The new unsymmetrical phthalocyanines (Pcs) proved to be excellent chemosensors for several anions (AcO-, Br-, Cl-, CN-, F-, H2PO4-, HSO4-, NO2-, NO3-, and OH-) in dimethyl sulfoxide (DMSO). Furthermore, the Pcs were grafted onto magnetic nanoparticles. The resulting novel hybrid material showed selectivity and sensitivity towards CN-, F-, and OH- anions in DMSO with limit of detection (LoD) of ≈4.0 µM. In water, the new hybrid chemosensor demonstrated selectivity and sensitivity for CN- and OH- anions with LoD of ≈0.2 µM. Bavdegalutamide mouse The new hybrids are easily recovered using a magnet, allowing recyclability and reusability, after acidic treatment, without losing the sensing proprieties.This paper discusses the structural difference and role of xylan, procedures involved in the production of xylooligosaccharides (XOS), and their implementation into animal feeds. Xylan is non-starch polysaccharides that share a β-(1-4)-linked xylopyranose backbone as a common feature. Due to the myriad of residues that can be substituted on the polymers within the xylan family, more anti-nutritional factors are associated with certain types of xylan than others. XOS are sugar oligomers extracted from xylan-containing lignocellulosic materials, such as crop residues, wood, and herbaceous biomass, that possess prebiotic effects. XOS can also be produced in the intestine of monogastric animals to some extent when exogenous enzymes, such as xylanase, are added to the feed. Xylanase supplementation is a common practice within both swine and poultry production to reduce intestinal viscosity and improve digestive utilization of nutrients. link2 The efficacy of xylanase supplementation varies widely due a number of factorsbenefits on intestinal health and performance in each respective species.The study of the transition from a laminar to a turbulent flow is as old as the study of turbulence itself .In this paper, the influence of processing input parameters on the heat-affected zone (HAZ) of three different material thicknesses of sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composites cut with a CO2 laser was investigated. Laser power, traverse speed, and gas pressure were selected as the most influential input parameters on the HAZ to optimize the HAZ response with fixing all of the other input parameters. Taguchi’s method was used to determine the levels of parameters that give the best response to the HAZ. The significance of input parameters was also determined by calculating the max-min variance of the average of the signal-to-noise ratio (S/N) ratio for each parameter. Analysis of variation (ANOVA) was used to determine each input parameter’s contribution to the influence on HAZ depth. The general results show that the minimum levels of laser power and the highest levels of traverse speed and gas pressure gave the optimum response to the HAZ. Gas pressure had the most significant effect on the HAZ, with contribution decreases as the material thickness increased, followed by the traverse speed with contribution increases with the increase in material thickness. Laser power came third, with a minimal contribution to the effect on the HAZ, and it did not show a clear relationship with the change in material thickness. By applying the optimum parameters, the desired HAZ depth could be obtained at relatively low values.The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica-magnesia (SiO2-MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2-MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2-MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2-MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.Recently, the pyrolysis process has been adapted as a sustainable strategy to convert metallized food packaging plastics waste (MFPW) into energy products (paraffin wax, biogas, and carbon black particles) and to recover aluminum. Usually, catalysts are used in pyrolysis treatment to refine pyrolysis products and to increase their yield. In order to study the effect of a catalyst on the formulated volatile products, this work aims to study the pyrolysis behavior of MFPW in presence of catalyst, using TG-FTIR-GC-MS system. The pyrolysis experiments were conducted with ZSM-5 Zeolite catalyst with different concentrations (10, 30, and 50 wt.%) at different heating rates (5, 10, 15, 20, 25, and 30 °C/min). In addition, TG-FTIR system and GC-MS unit were used to observe and analyze the thermal and chemical degradation of the obtained volatile compounds at maximum decomposition peaks. In addition, the kinetic results of catalytic pyrolysis of ZSM-5/MFPW samples matched when model-free methods, a distributed activat.Fucoidans exhibit a wide range of bioactivities and receive significant attention in functional food and cosmetic research. Industrial applications of fucoidan are limited partially due to high extraction and purification costs. The present study implements an enzyme-assisted extraction and step-gradient ethanol precipitation for fractionating fucoidan from Sargassum coreanum based on its charge and molecular weight and evaluation of ultraviolet B (UVB) protective effects in human keratinocytes (HaCaT). The fucoidan fraction SCOC4 indicated higher fucose and sulfate contents with Fourier-transform infrared and 1H NMR spectral patterns resembling fucoidans. SCOC4 dose-dependently abated UVB-induced keratinocyte damage via suppressing intracellular reactive oxygen species, apoptotic body formation, DNA damage via suppressing mitochondria-mediated apoptosis. UVB-protective effects of SCOC4 were further attributable to the augmentation of nuclear factor erythroid 2-related factor 2 mediated cellular antioxidant defense enzymes. Step-gradient ethanol precipitation was a convenient approach of fractionating fucoidans based on molecular weight and charge (depend on the degree of sulfation). Further evaluation of seasonal variations, biocompatibility parameters, efficacy, and shelf life may widen the use of S. coreanum fucoidans in developing UVB-protective cosmetics and functional foods.The Italian extra virgin olive oil supply chain has considerable potential for embarking on a path of sustainable development and evolution. In Italy, the great variety heritage and the different pedo-climatic characteristics result in local olive growing systems with different management techniques, producing extra virgin olive oils that are strictly entwined to the territory, with peculiar qualitative properties. Nevertheless, numerous criticalities have been traditionally eroding the competitiveness of Italian olive growing that could find in sustainability certifications, a lasting driver of value creation. Shared standardizations and certifications that include the three pillars of sustainability are therefore necessary for the development of the process.Spermatogenesis is a complex process, in which spermatogonial cells proliferate and differentiate in the seminiferous tubules of the testis to generate sperm. This process is under the regulation of endocrine and testicular paracrine/autocrine factors. In the present study, we demonstrated that colony stimulating factor-1 (CSF-1) is produced by mouse testicular macrophages, Leydig, Sertoli, peritubular cells and spermatogonial cells (such as CDH1-positively stained cells; a marker of spermatogonial cells). In addition, we demonstrated the presence of CSF-1 and its receptor (CSF-1R) in testicular macrophages, Leydig, Sertoli, peritubular cells and spermatogonial cells of human testis. We also show that the protein levels of CSF-1 were the highest in testis of 1-week-old mice and significantly decreased with age (2-12-week-old). link3 However, the transcriptome levels of CSF-1 significantly increased in 2-3-week-old compared to 1-week-old, and thereafter significantly decreased with age. On the other hand, the transcriptome levels of CSF-1R was significantly higher in mouse testicular tissue of all examined ages (2-12-week-old) compared to 1-week-old. Our results demonstrate the involvement of CSF-1 in the induction the proliferation and differentiation of spermatogonial cells to meiotic and postmeiotic stages (BOULE- and ACROSIN-positive cells) under in vitro culture conditions, using methylcellulose culture system (MCS). Thus, it is possible to suggest that CSF-1 system, as a testicular paracrine/autocrine system, is involved in the development of different stages of spermatogenesis and may be used in the development of future therapeutic strategies for treatment of male infertility.

2025©جميع الحقوق محفوطة لصاح شبكة وصل 

اتصل بنا

نحن لسنا في الجوار الآن. ولكن يمكنك إرسال بريد إلكتروني إلينا وسنعاود الاتصال بك في أسرع وقت ممكن.

Sending

Log in with your credentials

or    

Forgot your details?

Create Account